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WAVE REGIMES ON A NONLINEARLY VISCOUS FLUID

FILM FLOWING DOWN A VERTICAL PLANE

UDC 532.51O. Yu. Tsvelodub and V. Yu. Shushenachev

The flow of a thin film of a nonlinearly viscous fluid whose stress tensor is modeled by a power
law, flowing down a vertical plane in the field of gravity, is considered. For the case of low flow
rates, an equation that describes the evolution of surface disturbances is derived in the long-wave
approximation. The domain of linear stability of the trivial solution is found, and weakly nonlinear,
steady-state travelling solutions of this equation are obtained. The mechanism of branching of solution
families at the singular point of the neutral curve is described.
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1. Formulation of the Problem. Flows of thin fluid films in the field of gravity have attracted attention
of researchers for more than half a century. This interest is caused, in particular, by numerous applications of such
flows in various technological processes.

In the present paper, we consider a downward non-Newtonian fluid flow along a vertical plane in the field
of gravity. One of the best known models of nonlinearly viscous fluids (the model of a power fluid) is used as
a rheological relation. This model offers an adequate description of fluids with both pseudoplastic and dilatant
properties. The main objective of the work is to derive a model equation that allows studying wave regimes of the
flow of such rheological films.

We consider a downward flow of a thin film of a nonlinearly viscous fluid over a vertical plane in the field of
gravity. The schematic of the flow and the coordinate system used are shown in Fig. 1.

The system of the Navier–Stokes and continuity equations that describe the motion of such a film has the
form

∂u

∂t
+ (u∇)u = −∇p

ρ
+ g +

1
ρ

Div τ,

div u = 0,
(1)

where g is the acceleration of gravity, ρ is the density of the fluid, and Div τ is the divergence of the stress tensor.
Rheology of the fluid is modeled by a power law whose invariant form is [1]

τik = 2µn(2DklDkl)(n−1)/2Dik, Dik =
1
2

[ ∂ui

∂xk
+
∂uk

∂xi

]
.

Here τik is the stress tensor and Dik is the strain-rate tensor. The constant µn is an indicator of the fluid consistency,
and the parameter n characterizes the degree of non-Newtonian behavior.

The greater the deviation of n from unity, the more pronounced the viscosity anomaly in such a medium [2].
The values 0 < n < 1 refer to pseudoplastic fluids whose apparent viscosity decreases with increasing shear rates,
and the values n > 1 correspond to dilatant fluids whose apparent viscosity increases with increasing shear rates.
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Fig. 1. Diagram of the flow.

For arbitrary flow rates of the fluid, problem (1) admits solutions with a flat free surface h(x, z, t) = h0,
which satisfy the no-slip conditions on the solid wall and the absence of shear stresses on the free boundary. In this
case, the velocity profile is

U(y) = U0

[
1−

(
1− y

h0

)(n+1)/n]
, U0 =

n

n+ 1

( ρg
µn

)1/n

h
(n+1)/n
0 . (2)

Even for low flow rates, however, flow (2) can become wavy because of instability. To describe such flow
regimes, we write the equations of motion in the dimensionless form. Let L be the characteristic longitudinal scale
of the disturbance. Then, using L/U0, U0, and ρgh0 as scales for time, velocity, and pressure, and L and h0 as
scales in the x, z, and y directions, respectively, we write the equations of motion for the film in the following form
(the signs of dimensionless quantities are omitted):

ε
∂u

∂t
+ εu

∂u

∂x
+ v

∂u

∂y
+ εw

∂u

∂z
=

1
Fr

(
1− ε ∂p

∂x

)
+

1
Re

(
ε
∂τxx

∂x
+
∂τxy

∂y
+ ε

∂τxz

∂z

)
,

ε
∂v

∂t
+ εu

∂v

∂x
+ v

∂v

∂y
+ εw

∂v

∂z
= − 1

Fr
∂p

∂y
+

1
Re

(
ε
∂τyx

∂x
+
∂τyy

∂y
+ ε

∂τyz

∂z

)
, (3)

ε
∂w

∂t
+ εu

∂w

∂x
+ v

∂w

∂y
+ εw

∂w

∂z
= − ε

Fr
∂p

∂z
+

1
Re

(
ε
∂τzx

∂x
+
∂τzy

∂y
+ ε

∂τzz

∂z

)
,

ε
∂u

∂x
+
∂v

∂y
+ ε

∂w

∂z
= 0.

The dynamic boundary conditions on the solid boundary (y = 0) and free boundary [y = h(x, z, t)] have the
form

u = v = w = 0, y = 0,

(p− p0 −We (K1 +K2))ni − (Fr /Re)τiknk = 0, y = h(x, z, t). (4)

Here u, v, and w are the velocity components in the x, y, and z directions, respectively, p is the pressure in the
fluid, p0 is the external pressure (without loss of generality, it can be assumed to equal zero in what follows), ni are
the components of the normal vector

n = (−εhx, 1,−εhz)/
√

1 + ε2h2
x + ε2h2

z,

Ki are the dimensionless main curvatures of the free surface
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K1 +K2 =
(1 + ε2h2

x)εhzz − 2ε3hxhzhxz + (1 + ε2h2
z)εhxx

(1 + ε2h2
x + ε2h2

z)3/2

(hereinafter, the subscripts at the variable h indicate differentiation with respect to the corresponding variable),
and τik are the components of the stress tensor

τxx = 2I(n−1)/2ε
∂u

∂x
, τyy = 2I(n−1)/2 ∂v

∂y
, τzz = 2I(n−1)/2ε

∂w

∂z
,

τxy = τyx = I(n−1)/2
(∂u
∂y

+ ε
∂v

∂x

)
, τxz = τzx = I(n−1)/2ε

(∂u
∂z

+
∂w

∂x

)
, (5)

τyz = τzy = I(n−1)/2
(
ε
∂v

∂z
+
∂w

∂y

)
,

where I is the second invariant of the strain-rate tensor

I = 2
[
ε2

(∂u
∂x

)2

+
(∂v
∂y

)2

+ ε2
(∂w
∂z

)2]
+

(∂u
∂y

+ ε
∂v

∂x

)2

+ ε2
(∂u
∂z

+
∂w

∂x

)2

+
(
ε
∂v

∂x
+
∂w

∂y

)2

.

The following quantities are used as parameters in (3)–(5): ε = h0/L, Reynolds number Re = ρ hn
0/(µnU

n−2
0 ),

Froude number Fr = U2
0 /(g h0), and Weber number We = σ/(ρgh2

0).
The free boundary also obeys the kinematic condition

ε
(∂h
∂t

+ u
∂h

∂x
+ w

∂h

∂z

)
= v, y = h(x, z, t). (6)

Using Eq. (2), we can easily show that the following relation is satisfied with the above-made choice of
characteristic scales:

Re = ((n+ 1)/n)n Fr .

In what follows, we confine ourselves to long-wave disturbances, assuming that ε � 1 and Reynolds numbers are
rather low: Re ≈ 1.

To apply the multiple scale method (see [3]), we introduce a set of fast and slow times and new functions:

τm = εmt, m = 0, 1, 2, . . . ,

u = U + εu′, v = εv′, w = ε2w′, p = p0 + εp′, h = 1 + εh′.
(7)

Neglecting terms of the order of ε2 and higher and transposing the boundary conditions from the free
boundary to its undisturbed level (i.e., expanding all functions in powers of εh′), we obtain the system (the primes
at disturbed quantities are omitted)

ε
( ∂u
∂τ0

+ U
∂u

∂x
+ v

dU

dy
+

1
Fr

∂p

∂x

)
=

n

Re
∂

∂y

(∂u
∂y

(dU
dy

)n−1)
+ (n− 1)

ε

Re
∂

∂y

([
n
(∂u
∂y

)2

+
1
2

(∂w
∂y

)2](dU
dy

)n−2)
,

1
Fr

∂p

∂y
=

ε

Re

([
n
∂

∂x

(∂u
∂y

)
+

∂

∂z

(∂w
∂y

)](dU
dy

)n−1

+ 2
∂

∂y

(∂v
∂y

(dU
dy

)n−1))
, (8)

ε
( ∂w
∂τ0

+ U
∂w

∂x
+

1
Fr

∂p

∂z

)
=

1
Re

∂

∂y

(∂w
∂y

(dU
dy

)n−1)
+ (n− 1)

ε

Re
∂

∂y

((∂u
∂y

∂w

∂y

dU

dy

)n−2)
;

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

with the following boundary conditions:

u = v = w = 0, y = 0,
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0 =
(
nuy

(dU
dy

)n−1

−
(n+ 1

n

)n

h
)

+ ε
(
nh

∂

∂y

[
uy

(dU
dy

)n−1]
+ (n− 1)

(dU
dy

)n−2[
n
(∂u
∂y

)2

+
1
2

(∂w
∂y

)2])
, y = 1,

ε
(
p+ ε

∂p

∂y
h−We ε2∆h

)
= 2

Fr
Re

ε2
(dU
dy

)n−1 ∂v

∂y
, y = 1, (9)

0 =
(
wy

(dU
dy

)n−1)
+ ε

(
h
∂

∂y

[
wy

(dU
dy

)n−1]
+ (n− 1)

(dU
dy

)n−2 ∂u

∂y

∂w

∂y

)
, y = 1.

In condition (9), ∆ = ∂2/∂x2 + ∂2/∂z2 is the Laplace operator. Terms of higher orders of ε are retained
here because the values of We are normally high for thin films of numerous fluids; hence, we assume that We � 1
and We ε2 ≈ 1.

The kinematic condition (6) now acquires the form

v + ε
∂v

∂y
h = hτ0 + εhτ1 + hx + εuhx + εwhz, y = 1. (10)

We seek for the solution of problem (8), (9) in the form of series with respect to ε:

(u, v, p, h) =
∞∑

m=0

εm(um, vm, pm, hm). (11)

Equating the coefficients at identical powers of ε in the initial system to zero, we obtain the following
expressions for the zeroth order:

u0(x, y, z, t) =
n+ 1
n

(1− (1− y)1/n)h0,

v0(x, y, z, t) = −n+ 1
n

[
y +

n

n+ 1
((1− y)(n+1)/n − 1)

]
h0

x, (12)

w0(x, y, z, t) = 0, p0
∣∣∣
y=1

= We ε2∆h0.

Substituting Eq. (12) into Eq. (10), we obtain the equation that describes the behavior of disturbances in
the first approximation, namely,

hτ0 + c0hx = 0, c0 = (n+ 1)/n.

It follows from here that all disturbances in this approximation propagate with a constant velocity, which
exceeds the flow velocity at the flat free boundary by a factor of c0, i.e.,

h = h(ξ), ξ = x− c0τ0.

Considering the next approximation, after cumbersome but simple calculations, we obtain the expressions
for the next terms of series (11):

u1(x, y, z, t) = c1−n
0

(
cn0h

1[1− (1− y)1/n]

− Re
n

[
(1− yz)(n+1)/n − n

2(2n+ 1)
(1− z)(2n+2)/n − 3n+ 2

2(2n+ 2)

]
h0

x

+
Re
Fr

∂p0

∂x

1
n+ 1

[(1− z)(n+1)/n − 1] + cn0
(h0)2

n
[1− (1− z)(1−n)/n]

)
,

v1(x, y, z, t) = −c1−n
0

(
cn0 I1h

1
x −

Re
n
h0

xxI2 +
Re
Fr

I3
n+ 1

∂2p0

∂x2
+ 2cn0

I4
n

+
n

n+ 1
Re
Fr

∂2p0

∂y2
I3

)
,

w1(x, y, z, t) = c1−n
0

n

n+ 1
Re
Fr

∂p0

∂y
[(1− y)(n+1)/n − 1]. (13)
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Here

I1 = y +
n

n+ 1
[(1− y)(n+1)/n − 1],

I2 =
n

2n+ 1
[1− (1− y)(2n+1)/n]− n2

2(2n+ 1)(3n+ 2)
[1− (1− y)(3n+2)/n]− 3n+ 2

2(2n+ 1)
y,

I3 =
n

2n+ 1
[1− (1− y)(2n+1)/n]− y, I4 = y + n[(1− y)1/n − 1].

Substituting Eq. (13) into formula (10), we obtain the nonlinear equation for determining h:

hτ1 + 2
c0
n
hhx +

2(n+ 1)2c1−n
0

n(2n+ 1)(3n+ 2)
Rehxx +

c1−n
0

2n+ 1
Re
Fr

We ε2(∆hxx + n∆hzz) = 0. (14)

This equation describes the evolution of spatial disturbances on a vertical film of a power-type fluid in a reference
system moving with a velocity c0 relative to the wall.

Using the substitutions

h = aH, x1 = bx, z1 = bz, τ = dt, (15)

where

a =
4(n+ 1)3c−n

0

(2n+ 1)(3n+ 2)
Re

√
2 Fr

n(3n+ 2) We ε2
,

b = (n+ 1)

√
2 Fr

n(3n+ 2)We ε2
, d =

4(n+ 1)4c1−n
0

n2(2n+ 1)(3n+ 2)2
Re Fr
We ε2

,

we transform Eq. (14) to

∂H

∂τ
+ 4H

∂H

∂x
+
∂2H

∂x2
+

( ∂2

∂x2
+

∂2

∂z2

)( ∂2

∂x2
+ n

∂2

∂z2

)
H = 0. (16)

Transformations (15) mean, in particular, that the small parameter ε used in the expansion is

ε =

√
2(n+ 1)2

n(3n+ 2)cn0

Re
We

(17)

and, correspondingly, the characteristic longitudinal size of disturbances is determined by the equality

L =

√
n(3n+ 2)cn0
2(n+ 1)2

We
Re

h0.

As is seen from Eq. (17), the long-wave assumption for disturbances considered is valid for high values of
the Weber number, as in the case of Newtonian fluids.

In the case of two-dimensional disturbances, Eq. (16) coincides with the equation that describes the waves
on the surface of a Newtonian fluid film [4]:

∂H

∂τ
+ 4H

∂H

∂x
+
∂2H

∂x2
+
∂4H

∂x4
= 0. (18)

This equation is widely known as the Kuramoto–Sivashinsky (KS) equation. The KS equation has been studied in
much detail, and many of its solutions are known (see, e.g., [5, 6]). For n = 1, Eq. (16) transforms to the equation
from [7], which describes spatial waves for the Newtonian fluid.

Equation (16) is a typical example of model equations that arise in studying the evolution of disturbances
in actively dissipative media. Indeed, the linear analysis of stability of the trivial solution H = 0 shows that it is
unstable to disturbances of the form exp [iα(x− cτ) + iβz] with components of the wave vector (α, β) lying inside
the domain bounded by the neutral curve

nβ4 + (n+ 1)α2β2 + α4 − α2 = 0. (19)
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Fig. 2. Neutral curves for different values of the parameter n.

Such disturbances increase exponentially [whereas disturbances with wavenumbers outside the domain
bounded by curve (19) decay]. Owing to nonlinear effects, further growth of unstable disturbances is terminated,
which can result in formation of steady-state travelling modes. Curves (19) for several values of n are shown in
Fig. 2.

2. Analytical Results. Obviously, Eq. (16) has solutions propagating at an angle to the free-stream
direction (to the x axis). Indeed, using the substitutions

ξ1 = a1(x+ b1z), t1 = a2
1τ, a4

1 = 1/((1 + b21)(1 + nb21)), H1 = a1H(t1, ξ1),

we transform Eq. (16) to Eq. (18). It follows from here that Eq. (16) has solutions in the form of two-dimensional
waves propagating at an angle to the x axis, the tangent of this angle satisfying the relation tan ψ = b1. Thus,
all these solutions, which are actually one-dimensional, are obtained by simple recalculation of the solutions of the
KS equation; therefore, in what follows, we confine ourselves to studying the solutions of Eq. (16) travelling in the
streamwise direction.

For steady-state travelling solutions H = H(ξ, z), ξ = x− ct, Eq. (16) becomes

−c ∂H
∂ξ

+ 4H
∂H

∂ξ
+
∂2H

∂ξ2
+

( ∂2

∂ξ2
+

∂2

∂z2

)( ∂2

∂ξ2
+ n

∂2

∂z2

)
H = 0. (20)

We consider periodic solutions of Eq. (20) with the wavenumbers α and β in the ξ and z directions, respectively.
As Eq. (20) is invariant with respect to the transformations

H → H + const, c→ c+ 4const,

H → −H, c→ −c, ξ → −ξ,

we consider only solutions symmetric in terms of z

H(ξ, z) = H(ξ,−z), (21)

for which the following normalization condition is valid:

c ≥ 0,

λz∫
0

λξ∫
0

H(ξ, z) dξ dz = 0, λξ =
2π
α
, λz =

2π
β
. (22)

In the plane (α, β), spatial periodic solutions of Eq. (20) with an infinitely small amplitude branch off from
the trivial solutions along curve (19). We can logically assume that the solutions of small but finite amplitude exist
in the vicinity of this curve. Therefore, for wavenumbers in this vicinity, we seek the solution in the form of a series
in terms of the small parameter ε

H = εH1 + ε2H2 + . . . , c = εc1 + ε2c2 + . . . . (23)

370



Following [3], we introduce the set of fast and slow variables

ξm = εmξ, zm = εmz, m = 0, 1, 2, . . . .

Then, the differentiation operations in (20) are presented as

∂

∂ξ
=

∂

∂ξ0
+ ε

∂

∂ξ1
+ ε2

∂

∂ξ2
+ . . . ,

∂2

∂ξ2
=

∂2

∂ξ20
+ 2ε

∂2

∂ξ0 ∂ξ1
+ ε2

( ∂2

∂ξ21
+ 2

∂2

∂ξ0 ∂ξ2

)
+ . . . ,

∂

∂z
=

∂

∂z0
+ ε

∂

∂z1
+ ε2

∂

∂z2
+ . . . , (24)

∂2

∂z2
=

∂2

∂z2
0

+ 2ε
∂2

∂z0 ∂z1
+ ε2

( ∂2

∂z2
1

+ 2
∂2

∂z0 ∂z2

)
+ . . . ,

( ∂2

∂x2
+

∂2

∂z2

)( ∂2

∂x2
+ n

∂2

∂z2

)
=

[ ∂4

∂ξ40
+ (n+ 1)

∂4

∂ξ20 ∂z
2
0

+ n
∂4

∂z4
0

]

+ ε
[
4

∂4

∂ξ30 ∂ξ1
+ 4n

∂4

∂z3
0 ∂z1

+ (2n+ 2)
∂4

∂ξ20 ∂z0 ∂z1
+ (2n+ 2)

∂4

∂z2
0 ∂ξ0 ∂ξ1

]

+ ε2
[
4
( ∂2

∂ξ0 ∂ξ1
+ n

∂2

∂z0 ∂z1

)( ∂2

∂ξ0 ∂ξ1
+

∂2

∂z0 ∂z1

)
+

( ∂2

∂ξ20
+ n

∂2

∂z2
0

)( ∂2

∂ξ21
+ 2

∂2

∂ξ0 ∂ξ2
+

∂2

∂z2
1

+ 2
∂2

∂z0 ∂z2

)

+
( ∂2

∂ξ20
+

∂2

∂z2
0

)( ∂2

∂ξ21
+ 2

∂2

∂ξ0 ∂ξ2
+ n

∂2

∂z2
1

+ 2n
∂2

∂z0 ∂z2

)]
+ . . . .

Substituting series (23) into (20) and collecting [with allowance for Eq. (24)] terms at identical powers
of ε, we obtain an infinite system of linear differential equations. The first order in this system corresponds to the
equation

∂2H1

∂ξ20
+

( ∂2

∂ξ20
+

∂2

∂z2
0

)( ∂2

∂ξ20
+ n

∂2

∂z2
0

)
H1 = 0.

We require that the solution satisfies conditions (22) and obtain

H1 = (A eiαξ0 +Ā e−iαξ0)(a eiβz0 +ā e−iβz0), (25)

where A and a are functions of slow coordinates; the bar indicates complex conjugation; α and β belong to the
neutral curve (19). For the sought solution to satisfy the requirement of symmetry (21), A should be a function of
ξ1, ξ2, . . . only, and a should depend only on z1, z2, . . . .

The second order is described by the equation

−c1
∂H1

∂ξ0
+ 2

∂H2
1

∂ξ0
+ 2

∂2H1

∂ξ0 ∂ξ1
+ 4

[ ∂4H1

∂3ξ0∂ξ1
+ n

∂4H1

∂3z0 ∂z1
+
n+ 1

2
∂4H1

∂2ξ0 ∂z0 ∂z1

+
n+ 1

2
∂4H1

∂2z0 ∂ξ0 ∂ξ1

]
+
∂2H2

∂ξ20
+

( ∂2

∂ξ20
+

∂2

∂z2
0

)( ∂2

∂ξ20
+ n

∂2

∂z2
0

)
H2 = 0. (26)

Here, we should make the following comment. Determination of the form of A and a by considering higher approx-
imations allows us to find the relation between the corrections to the wave-vector components α and β and the
absolute value of the amplitude of the first harmonic. Knowing, e.g., the correction ∆α to α, we can say that we
found a solution in the vicinity of another point on the neutral curve (19) for which α1 = α + ∆α. Therefore, we
can assume that A = const in Eq. (25) and include it into a. In other words, we seek for finite-amplitude solutions
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Fig. 3. Character of branching.

with a rigorously fixed value of the α component of the wave vector. This can be done almost everywhere except
for vicinities of some particular points. With allowance for this comment, the condition of the absence of secular
terms in Eq. (26) yields the relations

∂a

∂z1
= 0, c1 = 0,

and the solution of Eq. (26) that satisfies the normalization conditions (22) has the form

H2 = − i

3α
ei2αξ0(a2 ei2βz0 +ā2 e−i2βz0)− 2|a|2i

α(4α2 − 1)
ei2αξ0 +c.c (27)

(hereinafter, “c.c.” indicates complex conjugation).
The third-order approximation in terms of ε yields the equation

−c2
∂H1

∂ξ0
+ 4

∂H1H2

∂ξ0
+ 4

[
n

∂4H1

∂3z0 ∂z2
+
n+ 1

2
∂4H1

∂2ξ0 ∂z0 ∂z2

]
+
∂2H3

∂ξ20
+

( ∂2

∂ξ20
+

∂2

∂z2
0

)( ∂2

∂ξ20
+ n

∂2

∂z2
0

)
H3 = 0. (28)

Identifying secular terms in Eq. (28) and equating them to zero, we obtain

c2 = 0, iβ(2nβ2 + (n+ 1)α2)
∂a

∂z2
− 2(4α2 + 5)

3(4α2 − 1)
a|a|2 = 0. (29)

The solution of Eq. (29) has the form a = a0 eiφz2 .
It follows from two last expressions that the correction φ to the wave-vector component β is related to the

amplitude a0 as follows:

φ = − 2(4α2 + 5)|a0|2

3α2β(4α2 − 1)
√

(n− 1)2α2 + 4n
. (30)

As it follows from (25), (27), and (30), we can use the absolute value of the amplitude α0 as the small
parameter ε. It is seen from Eq. (30) that the correction φ is negative for all values of n and α > 0.5. This means
that solutions of small but finite amplitude branch off from the trivial solution to the domain of its linear instability:
soft type of branching. For α < 0.5, the correction φ is positive, i.e., the branching proceeds toward the domain of
linear stability of the trivial solution: stiff type of branching. The situation is illustrated in Fig. 3.

As β tends to zero and α tends to unity, solution (27) remains bounded, but the value for the correction φ

increases unlimitedly. In this domain, the solution can be constructed by fixing the values of the β component
of the wave vector and seeking for corrections to α. In this situation, we can also construct a uniformly suitable
expansion (23).

As α tends to 0.5, the value of β tends to

β∗ =

√
−n+ 1

8n
+

1
8n

√
(n− 1)2 + 16n .

In addition to the unlimited increase in the correction φ, solution (27) also increases unlimitedly, and
expansion (25), (27), (29) becomes invalid. The reason is that, for the solution with the wave vector of the first
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harmonic in the vicinity (α = 0.5, β∗), the wave vector of one harmonic of the second approximation (2α = 1 and
β = 0) also lies in the vicinity of the neutral curve (19). This means that the vicinity of the point (α = 0.5, β∗) has
to be considered separately.

In the vicinity of this point, we should use the following expression instead (25):

H1 = A eiξ0/2(a eiβ∗z0 +ā e−iβ∗z0) +N eiξ0 +c.c. (31)

As we choose a particular point on the neutral curve (19), we cannot assume that A = const in Eq. (31): it has to
be considered as a function of slow coordinates ξm, m = 1, 2, . . . .

From the second-order approximation for H2, we obtain the expression

H2 = A1 eiαξ0(a2 ei2β∗z0 +ā2 e−i2β∗z0) +A2 ei(3/2)αξ0(a eiβ∗z0 +ā e−iβ∗z0) +N1 ei2αξ0 +c.c., (32)

where

A1 = − iA2

2β∗2((n+ 1) + 4nβ∗2)
, A2 = − 6iAN

45/16 + β∗2((9/4)(n+ 1) + nβ∗2)
, N1 = − i

3
N2,

and the requirement of the absence of secular terms yields the system

a
∂N

∂ξ1
+ c1N − 4A2|a|2 = 0,

β∗
(
4nβ∗2 +

n+ 1
2

)
A
∂a

∂z1
−

(1
2
− (n+ 1)β∗2

)
a
∂A

∂ξ1
+
c1
2
Aa− 2ĀNa = 0.

(33)

Solutions of system (33) for which (31) and (32) satisfy the conditions of symmetry (21) and normaliza-
tion (22) have the form

A = A0 eiδξ1 , a = a0 eiφz1 , N = N0 e2iδξ1 . (34)

Here, the amplitudes A0, a0, and N0 are functions of coordinates slower than ξ1 and z1. Substituting Eq. (34)
into Eq. (33), we obtain the system relating the corrections to the wavenumbers δ and φ with the values of the
amplitudes A0, a0, and N0

−(c1 + 4iδ)N0 + 4A2
0|a0|2 = 0,

A0a0(−c1 + 4(Ā0/A0)N0 − f(n)iφ+ g(n)iδ) = 0,
(35)

where

f(n) = 2β∗2(4nβ∗2 + (n+ 1)/2) > 0, g(n) = 1− 2(n+ 1)β∗2 ≤ 0.

The condition of existence of nontrivial solutions of system (33), in particular, yields the relation

−c21 + [(g − 4)δ − fφ]ic1 + 16|A0|2|a0|2 + 4fφδ − 4gδ2 = 0. (36)

In contrast to the above-considered solution (25), (27), (30), Eq. (36) is satisfied in two essentially different cases.
In the first case, where c1 = 0, we have

φ = (g(n)δ − 4|A0a0|2/δ)/f(n), N0 = −iA2
0|a0|2/δ. (37)

The geometry of the domain of existence of solutions of this type in the plane (δ, φ) for n 6= 1 is shown in
Fig. 4 as the hatched region. It follows from Eq. (37) that this solution branches off from the trivial solution along
the line φ = g(n)δ/f(n), which is a tangent to the neutral curve at the singular point (α = 0.5, β∗). Comparing
Eqs. (25), (27) and (31), (32), (37), we can easily see that these solutions belong to one family. By analogy with
the classification of the wave modes of the Newtonian fluid film flow (see, e.g., [8, 9]), we will call it the first spatial
family.

Of interest is the second case where c1 6= 0, which requires that

φ =
g(n)− 4
f(n)

δ. (38)

With allowance for Eq. (38), we obtain the following expression from Eq. (35):

c21 = 16(|A0|2|a0|2 − δ2). (39)
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Fig. 4. Domain of existence of solutions at the singular point for n 6= 1.

Thus, as it follows from Eqs. (37)–(39), two families of solutions with phase velocities c1 6= 0 branch off
from the first spatial family (31), (32)–(39) along the line (38). One of them satisfies the accepted normalization
condition (c1 > 0).

In contrast to the first spatial family, where different values of the amplitudes |A0a0| and |N0| correspond
to different values of δ and φ, the family of solutions with c1 6= 0 bifurcates without deviations from line (38) in
this approximation (curve 1 in Fig. 4). In this family, identical values of δ and φ correspond to different solutions
in which the velocity c1 increases with increasing spatial harmonic |A0a0|. It follows from Eqs. (35) and (38) that
the absolute values of the amplitudes of three- and two-dimensional harmonics are |N0| = |A0||a0|.

Equation (16) derived in the present work can be used to simulate wave processes in downward-flowing films
of nonlinearly-viscous fluids. The analytical results of solving Eq. (16) presented here will be used as the initial
approximation in numerical calculations of regimes with wavenumbers lying rather far from the neutral curve (19).

This work was supported by the Russian Foundation for Basic Research (Grant No. 04-01-00183) and by
the Siberian Division of the Russian Academy of Sciences (Integration project No. 4.2-04).
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